自然语言处理工具中的中文分词器介绍
中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块,不同于英文的是,中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词,分词效果将直接影响词性,句法树等模块的效果,当然分词只是一个工具,场景不同,要求也不同。在人机自然语言交互中,成熟的
Hanlp配置自定义词典遇到的问题与解决方法
本文是整理了部分网友在配置hanlp自定义词典时遇到的一小部分问题,同时针对这些问题,也提供另一些解决的方案以及思路。这里分享给大家学习参考。
java中利用hanlp比较两个文本相似度的步骤
使用 HanLP - 汉语言处理包 来处理,他能处理很多事情,如分词、调用分词器、命名实体识别、人名识别、地名识别、词性识别、篇章理解、关键词提取、简繁拼音转换、拼音转换、根据输入智能推荐、自定义分词器
HanLP 自然语言处理 for nodejs
·支持中文分词(N-最短路分词、CRF分词、索引分词、用户自定义词典、词性标注),命名实体识别(中国人名、音译人名、日本人名、地名、实体机构名识别),关键词提取,自动摘要,短语提取,拼音转换,简繁转换,文本推荐,依存句法分析(MaxE
Hanlp自然语言处理工具之词法分析器
本章是接前两篇《分词工具Hanlp基于感知机的中文分词框架》和《基于结构化感知机的词性标注与命名实体识别框架》的。
基于结构化感知机的词性标注与命名实体识别框架
上周就关于《结构化感知机标注框架的内容》已经分享了一篇《分词工具Hanlp基于感知机的中文分词框架》,本篇接上一篇内容,继续分享词性标注与命名实体识别框架的内容。
分词工具Hanlp基于感知机的中文分词框架
结构化感知机标注框架是一套利用感知机做序列标注任务,并且应用到中文分词、词性标注与命名实体识别这三个问题的完整在线学习框架,该框架利用1个算法解决3个问题,时自治同意的系统,同时三个任务顺序渐进,构成流水线式的系统。本文先介